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Abstract. We show that strong anomalous diffusion, i.e. 〈|x(t)|q〉 ∼ tqν(q) where qν(q) is a nonlinear
function of q, is a generic phenomenon within a class of generalized continuous-time random walks. For
such class of systems it is possible to compute analytically ν(2n) where n is an integer number. The
presence of strong anomalous diffusion implies that the data collapse of the probability density function
P (x, t) = t−νF (x/tν) cannot hold, a part (sometimes) in the limit of very small x/tν , now ν = limq→0 ν(q).
Moreover the comparison with previous numerical results shows that the shape of F (x/tν) is not universal,
i.e., one can have systems with the same ν but different F .

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.60.-k Transport processes

1 Introduction

Anomalous diffusion, i.e., when the scaling of the moments
of the position x(t) is

〈
x2(t)

〉
∼ t2ν with ν > 1/2, has

been observed in a rather wide class of dynamical sys-
tems, e.g., intermittent maps [1,2], 2D symplectic maps
[3–5] and random velocity field [6–8] as well in 2D time-
dependent flow [9] and Hamiltonian systems (e.g. the egg-
crate potential) [10,11]. In highly nontrivial systems, as
those described in [9,10], the existence of anomalous dif-
fusion has been established only numerically. On the other
hand, for random shears it is possible to give an analyti-
cal criterium both for the existence of anomalous diffusion
and for the computation of ν [12]. As far as we know, the
simplest nontrivial system showing anomalous diffusion
is the continuous-time random walk (CTRW), sometimes
also called Lévy walk. The CTRW is entirely specified by
the probability density function (pdf) ψ(r, τ) to move a
distance r in a time τ in a single motion event. Let us
assume, as in [13–15],

ψ(r, τ) = P (τ)P (r | τ), (1)

where P (τ) is the pdf of having a flight of duration τ and
P (r | τ) is the conditional pdf of a displacement r given
the flight time τ . The cases corresponding to P (τ) ∼ τ−g
and P (r | τ) = δ(| r | −τα)/2 can be treated analytically
[13–15].
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If the scaling of all moments can be described by just
one exponent, i.e.

〈
x2n(t)

〉
∼ t2nν , a collapse of the pdf’s

at different times is obtained exploiting the rescaling [9]

P (x, t) = t−νF (x/tν) . (2)

Then it also becomes clear that the value of ν, in general,
does not completely characterize the statistical properties
of the diffusion process, as the function F (ξ) needs to be
specified.

In many cases, the use of just one exponent is not
enough to describe all the moments, i.e., we have the
so-called strong anomalous diffusion [9,10]. For which
〈|x(t)|q〉 ∼ tqν(q), where qν(q) is a nonlinear function of
q. The existence of a non-unique scaling exponent implies
the failure of the data collapse for the pdf in the form
given by equation (2). The best known case of a process
showing strong anomalous diffusion is the advection of a
passive scalar by a turbulent velocity field. In many cases
[9] it has been observed that the function qν(q) is piece-
wise linear, i.e.,

q ν(q) '
{
ν1q q < qc

q − c q > qc.
(3)

This is basically due to the existence of two mechanisms:
a weak (i.e., with a unique exponent ν1 > 1/2) anomalous
diffusion for the typical events, and a ballistic transport
for the rare excursions (i.e., excursions much larger than
xtyp(t) ≡ exp 〈lnx(t)〉). The behavior (3) suggests the va-
lidity of the data collapse (2) for the pdf core, i.e. x/tν1

not too large, and two peaks at | x |∼ t, i.e., the footprint
of ballistic events. The cases where strong anomalous dif-
fusion for which (3) holds are relatively simple and surely
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different from the cases of the relative dispersion in the
fully developed turbulence [17].

By using only elementary techniques, in this paper we
show that the bi-linear behavior for the scaling of the
moments (3), which is present in the special case of the
CTRW commonly found in the literature, i.e. P (r | τ) =
δ(| r | −τα)/2, does not hold in the general case. To show
this point, we shall consider a generalized CTRW of the
form:

P (r ∼ τ1+h | τ) ∼ τ−S(h). (4)

The inspiration for this choice comes from the multifractal
description of turbulence [19].

The paper is organized as follows. In Section 2.1 we
present the “standard” CTRW model. We then present a
simple method to find the scaling for the even order mo-
ments (Sect. 2.2). In Section 2.3 the model is generalized,
and the same method is again applied to find the scaling.
Numerical analysis to corroborate the analytical results of
the general model are presented in Section 3 together with
some discussions related to the shape of P (x, t). Discus-
sions and conclusions can finally be found in Section 4.

2 CTRW models

Anomalous diffusion occurs when some, or all, of the hy-
pothesis of the central limit theorem break down. More
specifically, the system has to violate at least one of the
two following conditions:

1. Finite variance of the velocity.
2. Fast enough decay of the auto-correlation function of

the Lagrangian velocities.

The paradigmatic model for anomalous diffusion, namely
the Lévy flights [18] violate the first condition. In the one
dimensional case a Lévy flight corresponds to the evolu-
tion in discrete time

x(ti+1) = x(ti) + vi∆t (5)

of the particle position x with ti+1 = ti +∆t and vi being
independent stochastic variables identically distributed
according to a Lévy-stable distribution such that

P (v) ∼ v−g for large v (6)

where 1 < g ≤ 3. It is easy to show that 〈x2〉 = ∞ for
g < 3 and that this stochastic process shows anomalous
diffusion being xtyp ∼ t1/(g−1) > t1/2.

2.1 The “standard” CTRW model

The existence of an infinite variance is not very pleasing
from a physical point of view. This has lead to the intro-
duction of the CTRW (also called Lévy walks). The idea
is to relax the condition of a fixed, discrete time step in
such a way that the process still has anomalous diffusion,
but finite variance of the velocity.

Firstly, we introduce the particle trajectory

x(t) = x(t− τi) + viτi (7)

where x(t) denotes the position of the particle at time
t. During the random intervals τi, the particles move a
distance ri with constant random velocity vi independent
of τi. After each interval they choose new random values
for τi and vi.

The relevant quantity to characterize the motion of
the particle is the pdf ψ(r, τ) of having a displacement r
in time τ in a single motion event. This pdf is chosen in
the form (1). In the simple case where vi = ±v we have

P (r | τ) =
1
2
δ(| r | −vτ) . (8)

Taking

P (τ) ∼ τ−g for large τ (9)

we can determine the pdf P (x, t) to be in x at time t
[20,21]. Actually, by introducing the probability density
Ψ(x, t) to pass at location x at time t in a single motion
event (and not necessarily to stop at x)

Ψ(x, t) = P (x | t)
∫ ∞
t

dτ
∫ ∞
|x|

dr ψ(r, τ)

=
1
2
δ(| x | −vt)

∫ ∞
t

dτ P (τ) (10)

the pdf P (x, t) can be written in the following way

P (x, t) = Ψ(x, t) +
∫ ∞
−∞

dx′

×
∫ t

0

dτ ψ(x′, τ)Ψ(x− x′, t− τ) + ... (11)

the first term denotes the probability density to reach the
position x at time t in a single motion event, the second
term is the probability density to reach x at time t with
one stop in x′ and so on to include all the combinations of
motion events. In the Fourier-Laplace space (x → k, t →
u) the series in equation (11) assumes the closed form

P̂ (k, u) =
Ψ̂(k, u)

1− ψ̂(k, u)
(12)

and the behavior of 〈x(t)2〉 can be calculated analytically
by using the relation

〈x(t)2〉 = −L−1

[
∂2

∂2k
P̂ (k, u) |k=0

]
,

where L−1 denotes the inverse Laplace transform (u→ t)
[20,21].

The results is that

〈x(t)2〉 ∼


t2 1 < g < 2 ballistic motion
t4−g 2 < g < 3 anomalous diffusion
t 3 < g normal diffusion.

(13)
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Thus, enhanced anomalous diffusion occurs for 2<g< 3.
For the moments of small order, which describe the core
of the pdf, it has been shown that the asymptotic behavior
gives 〈|x(t)|q〉 ∼ tqν with ν = 1/(g − 1) [20,21]. Thus the
core of the pdf can be scaled as in (2) using ν. The ballistic
motions which are responsible for the different scaling of
higher order moments, show up as wings on the pdf, which
does not scale using ν.

The previous approach can be generalized [16] to the
case where

P (r | t) =
1
2
δ(| r | −τα), v = ±τα−1,

P (τ) ∼ τ−g with g > 1. (14)

In addition one can treat more complicated situations
[10,15] by considering that the particle can move ballisti-
cally but it can be also trapped in some structures as vor-
tices [22] or chaotic islands (standard map or “egg-crate”
potential) [21,23].

2.2 Finding the scaling of the moments

The usual method used in [16,20,21] to find the scaling of
the moments in the simple CTRW model is not elemen-
tary. We now present an alternative easier way to calculate
the displacement moments 〈xq(t)〉 and thus to character-
ize the anomalous diffusion.

Let us consider a particle moving ballistically with ve-
locity vi during the interval times τi. The velocities vi are
identically distributed, independent, random variables as-
suming the values ±1 alternatively. The intervals times τi
are identically distributed, independent, random variables
and assuming the value τ with probability

P (τ) ∼ τ−g with g > 1 and τ ∈ [tmin, T ] (15)

where tmin and T are the lowest and highest cutoffs, re-
spectively. The reason for which we need to introduce such
cutoffs will be clear later. The particle position at the time
t can be written as

x(t) =
n∑
i=1

viτi + vn+1εn+1

with εn+1 = t−
n∑
i=1

τi (16)

n being the (random) integer value for which tn ≤ t
and tn+1 > t. The total time t can be rewritten as
t =

∑n
i=1 τi + εn+1. Denoting by N ≡ 〈n〉 the aver-

age value of the number of time steps necessary to reach
the time t, one has for large times t ' N〈τ〉 and thus
x(t) =

∑n
i=1 viτi.

From simple considerations related to the symmetry of
the velocity pdf under the transformation v 7→ −v, it im-
mediately follows that the odd-order moments 〈x(t)q〉 are
trivially zero. Conversely, even-order moments are nonzero
and can be evaluated exploiting the following properties:

〈viτj〉 = 0, 〈vivj〉 ∝ δij , 〈τiτj〉 ∝ δij . For times large
enough, the mean squared displacement thus reads:

〈
x(t)2

〉
=

〈
n∑
i=1

n∑
j=1

(vi τi) (vj τj)

〉
= N

〈
(v τ)2

〉
. (17)

Similarly, for the fourth and sixth order moments the limit
of large times yields〈

x4(t)
〉

= N
〈
(vτ)4

〉
+ 3 N2

〈
(vτ)2

〉2〈
x6(t)

〉
= N

〈
(vτ)6

〉
+ 15 N2

〈
(vτ)2

〉 〈
(vτ)4

〉
+ 15 N3

〈
(vτ)2

〉3
(18)

and so on.
Our attention being focused on the behavior of 〈x(t)q〉

as a function of t, we make the substitution N = t/ 〈τ〉 in
previous expressions (17) and (18) and again exploit the
facts that vi and τi are uncorrelated and

〈
v2
i

〉
= 1 to get:〈

x2(t)
〉

=
t

〈τ〉
〈
τ2
〉

〈
x4(t)

〉
=

t

〈τ〉
〈
τ4
〉

+ 3
(

t

〈τ〉

)2 〈
τ2
〉2

〈
x6(t)

〉
=

t

〈τ〉
〈
τ6
〉

+ 15
(

t

〈τ〉

)2 〈
τ2
〉 〈
τ4
〉

+ 15
(

t

〈τ〉

)3 〈
τ2
〉3
. (19)

For times t� T the leading term for
〈
x2n(t)

〉
is that one

proportional to tn, therefore one has:

〈
x(t)2n

〉
∝ tn

(〈
τ2
〉

〈τ〉

)n
where n is integer (20)

which is just ordinary diffusive behaviour. Diffusive be-
havior in such limit is actually expected from general con-
siderations. Indeed, when t � T the particle position at
the time t can be rearranged in the form of a sum of
almost independent displacements. If the number of the
latter is large enough, central limit arguments apply, with
the immediate consequence is that particles undergo diffu-
sive motion. Such result can also be rigorously proved ex-
ploiting multiscale perturbative expansions in the (small)
parameter T/t as done, e.g., in reference [12].

In the opposite regime, where t � T , the system is
strongly correlated, central limit arguments does not ap-
ply, and the final result is that non-diffusive (i.e. anoma-
lous) regimes can occur where 〈xq(t)〉 ∼ tqν(q) with
ν(q) 6= 1/2.

The possible emergence of anomalous behaviors in the
limit t → ∞ can be investigated by looking at the de-
pendence of moments on the cutoff T . For times shorter
than T they behave as 〈xq(t)〉 ∼ tqν(q), but around
t ∼ T the moments have a crossover to diffusive behaviour,
〈xq(t)〉 ∼ (t/ 〈τ〉)q/2

〈
τ2
〉q/2.
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By matching the two different regimes at t = T , and
using the results 〈τq〉 ∼ T−g+q+1 for −g + q + 1 > 0 and
〈τq〉 = O(1) for −g + q + 1 < 0, the following expressions
for qν(q) are found as a function of the exponent g:

g ∈ (1, 2] qν(q) = q q = 2, 4, 6, ...

g ∈ (2, 3] qν(q) = q + 2− g q = 2, 4, 6, ...

g ∈ (3, 4] qν(q) = q/2 q = 2
qν(q) = q + 2− g q = 4, 6, 8, ...

(21)

and so on for higher values of g.
From (21) it follows that the anomalous diffusion phase

takes place for higher and higher moments as g increases.
For q large enough one has qν(q) = q + const. and not-
ing that 2ν(2) 6= 2 one can conclude that ν(q) can not
be constant and therefore a strong anomalous diffusion is
present.

The matching argument had been used in reference [12]
in the context of the multiscale method for the anomalous
diffusion in random shear flows [6].

2.3 Generalized CTRW model

We now present a generalization of the previous model
showing a strong anomalous diffusion regime characterized
by a non-piecewise linear behavior as a function of the
order q.

As in the previous case the particle moves ballistically
with random velocity vi during the random interval times
τi = ti+1 − ti. We assume that τi has the same pdf as
in (15) but now the velocities vi assume the value ±τhi
where h is a random positive variable conditioned on τi.
Specifically, the conditional pdf P (h | τ) is

P (h | τ) ∝ τ−S(h) (22)

where S(h) is a positive smooth concave function. This
has the effect of giving a larger variance to the velocity,
the larger the time τi. The function S(h) can be taylored
to a special need, i.e., to mimic the intermittent turbu-
lent velocity field. Here we just use a generic, simple func-
tion S(h) = h2/(2σ2), as we are mainly interested in the
generic properties of the model.

The moments
〈
(v τ)2q

〉
can now be calculated:

〈
(v τ)2q

〉
=
∫ +∞

0

dh
∫ T

tmin

dτ (vτ)2qP (τ)P (h | τ) (23)

∼
∫ T

tmin

dτ τ−g+2q

∫ +∞

0

dh τ2q h−S(h) (24)

=
∫ T

tmin

dτ τ−g+2q+y(2q) ∼ T−g+2q+y(2q)+1

(25)

where the integral
∫

dh τ2q h−S(h) has been evaluated ex-
ploiting the steepest descent method and we have defined

y(2q) ≡ max
h

[2q h− S(h)]. (26)

Now using the specific shape of S(h), expression (26) takes
the form:

y(2q) = q2y(2) with y(2) = 2 σ2. (27)

Exploiting the same matching arguments as in Section 2.2,
the following expressions for the exponents qν(q) are ob-
tained:

g ∈ (1, 2] qν(q) = q2

2 σ
2 + q

q = 2, 4, 6, ...

g ∈ (2, 3 + y(2)] qν(q) = q2

2 σ
2 + q + 2− g

q = 2, 4, 6, ...

g ∈ (3 + y(2), 4 + y(4)] qν(q) = q/2
q = 2
qν(q) = q2

2 σ
2 + q + 2− g

q = 4, 6, 8, ...
(28)

and so on, for higher values of g.
We now see that in the general case of the CTRW,

qν(q) is not just a bi-linear function, and the exact form
depends upon the shape of S(h). The generalization to an
arbitrary shape of S(h) is straightforward.

As far as we know it is not simple to obtain the re-
sults in equation (21) and equation (28) with the method
discussed in Section 2.1.

3 Numerical simulations

We present results of numerical simulations of the general
model defined by equations (15, 22). The goal of the nu-
merical simulations has been to verify the validity of the
theoretical expectations (21) and (28) and to study the
pdf of x(t) in more detail.

In practice the pdf for the length of the jumps P (τ)
has to be supplemented with a lower cutoff. As it is the
tail of the distribution which governs the scaling of the
moments of x(t) the results are independent upon how
the cutoff is made. We used a hard cutoff at τ = 1, such
that P (τ)=0 for τ < 1 and

P (τ) = (g − 1)τ−g for τ > 1 . (29)

The moments have been calculated as an ensemble average
of many realizations of the process for times 0 < t <
T̃ . For all the simulations presented here, T̃ has been set
to 106.

In Figure 1 the scaling of the second moment
〈
x2(t)

〉
with t for different values of g and σ = 0.2 is shown.
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Fig. 1. The scaling of the displacement


x2(t)

�
for three dif-

ferent values of g, each corresponding to diffusive behavior
(g = 4.0), anomalous diffusion (g = 2.5) and ballistic motion
(g = 1.5). The value of σ is 0.2 for all the cases. In the inset
the same is shown, but this time rescaled with the expected
behavior
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∝ t2ν(2), such that a scaling in accordance with

the theoretical prediction corresponds to a horizontal line.
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Fig. 2. The scaling of the higher order moments for three
examples, with g = 2.50 and σ = 0, 0.2 and 0.4. The line
originating from q = 0 corresponds to q/(g− 1). The other
curves corresponds to qν(q)=q+ 2− g + (qσ)2/2.

Examples have been chosen where diffusive, anomalous
and ballistic behavior is expected. After an initial ballis-
tic motion for short times, a transient towards scaling is
taking place. For long times, clean scaling with an expo-
nent corresponding to equations (21) is evident.

To show how the introduction of the velocity field from
Section 2.3 influences the moments, we have calculated the
higher order moments of x(t) for σ = 0, 0.2 and 0.4 for g =
2.5 (Fig. 2). For the case with σ=0 we see a clear bi-linear
behavior as expected, with a cross over at qc ≈ 1.5. For low
order moments (q < 1) the core of the pdf is important,
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Fig. 3. The pdf of x(t) at three different times rescaled ac-
cording to equation (2) for a situation with g=2.5 and σ=0.2
corresponding to the anomalous regime. The pdf have been
scaled with the typical value, xtyp(t).

and the behavior approaches q/(g − 1). As is seen in the
inset, this behavior is only to be strictly valid in the limit
q → 0. The scaling of the moments changes smoothly into
the prediction qν(q) = q + 2 − g for q ≥ 2. Using the
fact that qν(q) is a concave increasing function and, for
σ = 0, the slope can not be larger than 1, one obtains that
the prediction given by equation (21), obtained only for
even order moments, surely is valid for any moment larger
than 2. For the generalized model (σ > 0), the fluctuations
become much stronger, and it was not possible to get a
clear convergence for large orders. However, for q = 2 the
prediction in equation (28) and the numerical results are
in perfect agreement.

The characterization of the process by the scaling ex-
ponents of the moments can be seen as a way to probe
the pdf p(x, t) of the process. Roughly speaking, the low
order structure functions characterize the core of the pdf,
while higher orders characterize the tails. In the case of
“ordinary” anomalous diffusion, the pdfs can be rescaled
according to equation (2), due to the fact that the whole
process can be characterized by just one scaling exponent.
However for the bi-linear or the strong diffusive cases, no
such renormalization can be done, as more than one ex-
ponent is needed to characterize the process. As all the
cases seem to have the same limiting behavior for q → 0,
it might be possible to make a collapse of the core of the
pdf. In Figure 3 the pdf for g = 2.5 and σ = 0.2 has been
rescaled using the typical value xtyp(t) = exp(〈ln(|x(t)|)〉.
As expected the core of the rescaled pdfs show a good
overlap, while the tails diverge. For higher values of σ the
area of the core with overlap becomes smaller and smaller.

4 Discussions and conclusions

By using only elementary techniques, we have shown in
this paper that the strong anomalous diffusion appears
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in CTRW. Our approach, in which one computes the even
moments 〈x(t)q〉 for a system with a cutoff T on the pdf
P (τ), and then the matching of the behaviors at t ≥ T
and t ≤ T , allows us to treat rather general cases. This is
a relevant advantage with respect to the approach com-
monly used for CTRW which seems to us to be difficult
to apply for more general cases. In the case of generalized
CTRW, i.e. with equation (22), one has a nontrivial (non
bi-linear) shape of qν(q). This implies that the pdf P (x, t)
cannot be written in the form (2). On the other hand we
found that the rescaling (2), with ν = ν(0), is valid in
a limited range of x/xtyp. It is rather natural to wonder
if, at least in this limited range, the function F (ξ) is de-
termined by the exponent ν(0). From previous works [24,
25] and the results discussed in Section 3, it seems to us
that one has a negative answer: ν does not determine the
function F (ξ).

As the shape of the function describing the scaling of
the moments looks similar to what one finds for the rela-
tive dispersion of a passive scalar by a turbulent velocity
field, one might like to use the the CTRW model to de-
scribe this process. There is however some differences that
has to be taken into consideration. In fully developed tur-
bulence, a flight of duration τ can be considered as asso-
ciated to an eddy of size l ∼ τ3/2. In a process of relative
diffusion, one typically has an increase of the relative dis-
tance with the time. This implies that a flight of duration
τ is preferentially followed by another flight with a larger
duration than the previous. The easiest way for a realistic
description of relative dispersion in fully developed turbu-
lence should thus consist in a further generalization of the
CTRW where a Markov ingredient, i.e. a dependence of
the flight duration at the time t on the duration at the
previous time, is introduced. It seems to us that this is
a nontrivial task; a first attempt in this direction can be
found in the recent work [26].
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